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機械科学 II ―１／５ 

機械科学 II 

（問題１から問題３の全てに解答し，それぞれ別の答案用紙に記入せよ．各問題に２枚以上の答案用紙を用

いる場合には，「問題１（２枚目）」などのように記入せよ．） 

 

問題１ 

(1) 3 次元空間において，原点 O を通る任意の回転軸（回転軸の単位ベクトル  n ���⃗  ）の周りに，点 P を角度 θ

（右ねじ方向を正）だけ回転させた点を P' とする．点 P の位置ベクトルを  r ���⃗，点 P' の位置ベクトルを  r' ����⃗  
として，以下の問に答えよ． 

   (a)  点 P が回転する面と回転軸の交点を O' とする． O O'  ������������⃗を  𝑛𝑛 ����⃗  と  𝑟𝑟 ���⃗  を用いて表せ． 

(b)  点 P を回転軸周りに 90° 回転させた点を Q とする． O' Q �����������⃗  を  n ����⃗  と  r ���⃗  を用いて表せ． 

(c)   r' ����⃗  を次式で表したときの係数 A，B を求めよ． 

 r' ����⃗  =  r ���⃗  + (  n ���⃗  ×  r ���⃗  ) A + {  n ���⃗  × (  n ���⃗  ×  r ���⃗  ) } B 
(d)  n  �����⃗ = (n1  n2  n3)T， r ���⃗  = (r1  r2  r3)T とする．ベクトル積  n ���⃗  ×  r ���⃗  を  r ���⃗  の一次変換として表現したとき， 

すなわち  n ���⃗  ×  r ���⃗  = [ N ]  r ���⃗  と表したときの行列 [ N ] を求めよ． 

(e) ベクトル  r ���⃗  を  r' ����⃗  に変換する回転行列を単位行列 [ I ]，θ，および問(d)で求めた [ N ] を用いて表せ． 
 

(2)  変数 x の関数 y = y (x) に対する 1 階及び 2 階の導関数を y' (x) ≡ dy
dx ，y" (x) ≡ d2y

dx2 とするとき，微分方程

式 

  y" (x) + y (x) = δ (x− π) + δ (x− 2π) 

  を 

        y' (0) = 1，y (0) = 0 
の条件のもとでラプラス変換を用いて解き，y (x) (0 ≤ x ≤ 6π) の概形を描け．ここで， δ (x) はデルタ関数 

を表す． 
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問題２

以下は，理想気体に関する説明文である．文章中の空欄に入る適切な数，記号あるいは式を答えよ．
(1) 図 2-1に示すように，断面が一様なシリンダ内に理想気体がピストンで密封されている．気体とシリン
ダとの間，および気体とピストンとの間での熱の授受はないものとする．また，ピストンはシリンダ
内を x方向に滑らかに移動でき，シリンダは十分に長いものとする．気体の質量をM，気体定数をR

とし，定積比熱 cv は一定であるとする．図 2-2のようにピストンを xの正の方向に速さW で動かす．
この過程で，気体の体積は V0から V1まで膨張する（V1 > V0）．ただし，膨張前と膨張後の気体はい
ずれも熱平衡状態にあるとする．
膨張前（体積 V0）の気体の絶対温度を T0，内部エネルギーをU0，エントロピーを S0とし，膨張後

（体積 V1）の気体の絶対温度を T1，内部エネルギーを U1，エントロピーを S1とすると，膨張前と膨
張後の気体の内部エネルギーの差は U1 − U0 = (a) となり，エントロピーの差は

S1 − S0 = (b) · · · · · · · · · (A)

と表せる．
ピストンの速さが十分小さい場合には，絶対温度 T0，T1と体積 V0，V1との間に T1/T0 = (c) の関

係が成り立つ．また，膨張前と膨張後の気体のエントロピーの差は S1 − S0 = (d) となる．

図 2-1

図 2-2

（次ページに続く）
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問題２の続き

(2) 問 (1)で考えた，図 2-1および図 2-2に示すシリンダ内にピストンで密封された質量M，気体定数 R

の理想気体の分子の運動を考察する．気体は単一成分の単原子分子理想気体であり，シリンダ内の分
子の総数をN とする．分子とピストン表面および分子とシリンダ内面との衝突は弾性衝突であるとし，
分子間の衝突は無視できるものとする．シリンダ内面およびピストン表面は滑らかであり，シリンダ
左端面およびピストン表面は x軸に垂直である．また，シリンダ側面は x軸に平行である．
まず，図 2-1に示すようにピストンが x = L0の位置で静止している場合（W = 0）を考える．こ

のとき，気体の体積は V0である．x方向速度成分 u（> 0）の１つの気体分子がピストンに衝突すると
（各分子ごとに uの値は異なる），分子の x方向運動量は (e) から (f) に変化し，分子はピストンから
xの負の方向に力積 (g) を受け，その反作用としてピストンは xの正の方向に力積 (g) を受ける．時
間 δtの間に分子はピストンに (h) 回だけ衝突するので，時間 δtの間にピストンは１つの分子から xの
正の方向に力積の和 (i) を受ける．N 個の分子に対する任意の物理量Xの平均を ⟨X⟩と表すと，時間
δtの間にN 個の分子からピストンが受ける xの正の方向の力積の総和は，M⟨ (j) ⟩ (k) となる．した
がって，ピストン表面に作用する単位時間，単位面積当たりの平均的な力積（気体の圧力）は

p0 = M⟨ (j) ⟩/ (l) · · · · · · · · · (B)

と表せる．
次に，ピストンを xの正の方向に一定の速さW で動かし，気体を膨張させる．ピストンの速さが気

体分子の速さより十分小さい場合（W ≪ u）には，x方向速度成分 u（> 0）の１つの分子がピストン
に衝突すると，分子の x方向速度成分の大きさは (m) だけ減少する．このとき，１回の衝突により分子
の運動エネルギーは (n) だけ減少する．図 2-2に示すようにピストンの位置が x = Lのとき，W ≪ u

であるから衝突による uの大きさの変化は小さく，ピストンが静止している場合と同様に，時間 δtの
間に分子はピストンに (o) 回だけ衝突すると考えられる．ゆえに，時間 δtの間に１つの分子の運動エ
ネルギーは (p) だけ減少する．このとき，気体の体積は V から V + δV に増加し，δV/V（= Wδt/L）
を用いると，N 個の分子の全運動エネルギーの減少量は

M⟨ (q) ⟩ (r) · · · · · · · · · (C)

と表せる．式 (B)により，このときの圧力 pを用いて表すと，M⟨ (q) ⟩ (r) =p (s) となる．また，分
子の速度の自乗平均は等方的になるので，N 個の分子の全運動エネルギーは

3

2
M⟨u2⟩ · · · · · · · · · (D)

と表せる．式 (C)と式 (D)との比は，エネルギー等分配の法則から，単位時間当たりの気体の絶対温
度の減少量 −δT（> 0）と気体の絶対温度 T との比に等しくなるので，−δT/T = (t) δV/V が得ら
れる．したがって，膨張前の気体の体積 V0，絶対温度 T0と膨張後の気体の体積 V1，絶対温度 T1との
間には，T1/T0 = (u) の関係が成り立つ．また，膨張前後のエントロピーの差は式 (A)を用いると，
S1 − S0 = (v) となる．
ピストンの速さが気体分子の平均速さより十分大きい場合には，T1/T0 = (w) となり，膨張前と

膨張後の気体のエントロピーの差は式 (A)を用いると，S1 − S0 = (x) > (v) となる．
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問題３ 

図 3-1 に示す両端が単純支持された一様なはりの横振動について，以下の問に答えよ．ただし，はりの左端を

原点 O とし，はりの中心線に沿って座標 x を定義する．また，時刻 t ，座標 x におけるたわみを y (t, x) と

し，y は鉛直下向きを正とする．はりの全長を L，密度を ρ，断面積を A，断面二次モーメントを I，ヤング

率を E とする．  

 

まず，はりに外力が負荷されていないときの横振動（自由振動）について考える． 

(1) 図 3-1 に示すはりの座標  x と x + dx の間の微小要素について考える．時刻 t ，座標 x の断面のせん断力

を S (t, x)，曲げモーメントを M (t, x) とし，それぞれが図 3-2のようにはたらいている．以下の問に答え

よ．ただし，微小要素のせん断変形と回転慣性は無視するものとする． 

(a) y 方向の運動方程式を示し，
∂ S

∂ x
 を  y  を用いて表せ． 

(b) 座標 x + dx まわりのモーメントのつり合いの式を示し，
∂ M

∂ x
 を S を用いて表せ． 

(2) 傾き角 
∂ y

∂ x
  が十分小さいと仮定して，問(1)の結果を用いてはりの横振動の運動方程式が以下のように表

されることを示せ． 

ρA
∂

 2
y

∂ t 2
+ EI

∂
 4
y

∂ x 4
= 0 

(3) 時刻 t の関数 T (t) と，座標 x の関数 X (x) を用いて，問(2)の微分方程式の解を  

y (t, x) = T (t) X (x) とおくと， 

−
EI

d 4X
d x 4

ρAX
=

d 2T
d t 2

T
= Ω  ⋯  ( ∗ ) 

が成り立つことを示せ．ただし，Ω は定数である． 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

（次ページに続く） 

図 3-1 

図 3-2 
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問題３の続き 

(4) Ω = −ω2 (ω は定数)として，問(3)の式( ∗ )を用いて問(2)の微分方程式を解き，T (t) ，X (x) の一般解を示

せ．ただし， sinh x =
e x − e−x

2
，cosh x =

e x + e−x

2
 を用いてよい． 

(5) 両端が単純支持されたはりの境界条件を示し，横振動の n 次の固有角振動数(n = 1, 2, 3, …) を求めよ．さ

らに，n 次の固有角振動数に対応した固有関数を Xn(x) とし， X1(x)，X2(x)，X3(x) の概形を図示せよ． 

(6) 問(5)で求めた固有関数同士は直交関係にあること，すなわち任意の自然数 i,  j (i ≠ j) について 

∫ Xi Xj dx = 0
L

0

  

が成り立つこと示せ． 

 

次に，はりの上部において y 方向に，時刻 t と座標 x に依存する(単位長さ当たりの)外力 p (t, x) が負荷さ

れているときのはりの横振動について考える． 

(7) はりの横振動の運動方程式は，問(1)，(2)と同様に，はりの微小要素の運動方程式から，以下のように表

されることを示せ． 

ρA
∂

 2
y

∂ t 2
+ EI

∂
 4
y

∂ x 4
= p (t, x) 

(8) 問 (7)の微分方程式の解は，時刻  t  の関数  T̂n
 
(t)  と問 (5)の固有関数  Xn(x)  を用いて  y (t, x) = 

Σn=1
∞

T̂n
 
(t) Xn(x) として与えられる．問(6)の固有関数同士の直交関係を利用すると， T̂n

 
(t) について以下の

ような微分方程式が導かれる． 

d
 2

T̂n
 

d t 2
+ωn

2 T̂n
 =

1

ρA
Pn(t) 

ここで， ωn
  は問(5)で得られた自由振動の n 次の固有角振動数であり，Pn(t) は時刻 t の関数である．こ

のとき Pn(t) を固有関数  Xn(x) と p (t, x) を用いて表せ． 

(9) 問(8)の微分方程式の一般解は以下のような形で表される． 

T̂n
 
(t) = Tn(t) + 

1

ρAωn

∫ Pn(τ) sin (ωn
 (t − τ)) dτ

t

0

 

ここで，Tn(t) は問(4)で得られた n 次の固有角振動数に対応する T (t) である． 

初期条件を y|t = 0= 0，
∂ y

∂ t
|

t = 0
= 0 とする．はりの中央  (x = L/2 ) に周期的な外力が負荷され， p (t, x) =

F0 sin (ω0
 t) δ (x − L/2) とするとき，はりの振動の解は以下のように表される． 

 y (t, x) = ∑ [( イ ) sin (ω0t) + ( ロ ) sin (ωnt )]

∞

n = 1

 

ただし，F0，ω0
  は定数，ω0

 ≠ ωn
  (n = 1, 2, 3, …) であり，δ (x) はデルタ関数である．このとき，括弧 ( イ )，

( ロ ) 内を埋めよ． 

 

 

 

 

 

 




